Non-Orientable Surfaces Bounded by Knots and the Knot Trace

Megan Fairchild

Louisiana State University

October 2024

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

• The 6_1 knot has $g_4(6_1) = 0$.

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

- The 6_1 knot has $g_4(6_1) = 0$.
- When $g_4(K) = 0$, we say K is a slice knot.

Definition (Non-Orientable 4 Genus)

Non-Orientable 4 genus is denoted $\gamma_4(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^4 so that $\partial F = K$.

Definition (Non-Orientable 4 Genus)

Non-Orientable 4 genus is denoted $\gamma_4(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^4 so that $\partial F = K$.

• Does $g_4(K)$ provide a bound for $\gamma_4(K)$?

- Does $g_4(K)$ provide a bound for $\gamma_4(K)$?
- What are the obstructions for $\gamma_4(K) = 1$?

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$ does this mean $\gamma_4(5_1) = 5$?

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$ does this mean $\gamma_4(5_1) = 5$?

Thus, $\gamma_4(5_1) = 1$ and we have the bound $\gamma_4(K) \leq 2g_4(K) + 1$.

Techniques for Calculation

3 main methods for calculating the non-orientable 4-genus of knots.

3 main methods for calculating the non-orientable 4-genus of knots.① Lower bounds coming from knot invariants

- 3 main methods for calculating the non-orientable 4-genus of knots.
 - 1 Lower bounds coming from knot invariants
 - 2 Non-orientable band moves

- 3 main methods for calculating the non-orientable 4-genus of knots.
 - 1 Lower bounds coming from knot invariants
 - **2** Non-orientable band moves
 - **3** Obstructions from the double branched cover

Knot Invariants

Denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as Arf(K).

Knot Invariants

Denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as Arf(K).

Proposition (Yasuhara)

Given a knot K in S^3 , if $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \ge 2$.

Knot Invariants

Denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as Arf(K).

Proposition (Yasuhara)

Given a knot K in S^3 , if $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \ge 2$.

The 4-dimensional clasp number of a knot, $c_4(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4-ball bounded by K.

Denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as Arf(K).

Proposition (Yasuhara)

Given a knot K in S^3 , if $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \ge 2$.

The 4-dimensional clasp number of a knot, $c_4(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4-ball bounded by K.

Lemma (F)

Given a knot K satisfying $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, and $c_4(K) \in \{1, 2\}$, then $\gamma_4(K) \equiv 2$.

The little Upsilon invariant is denoted v(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \le \gamma_4(K)$$

The little Upsilon invariant is denoted v(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \le \gamma_4(K)$$

The *d*-invariant from -1 surgery on a knot in S^3 is denoted $d(S^3_{-1}(K))$.

The little Upsilon invariant is denoted v(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \le \gamma_4(K)$$

The *d*-invariant from -1 surgery on a knot in S^3 is denoted $d(S^3_{-1}(K))$.

Theorem (Batson)

For a knot K,

$$\frac{\sigma(K)}{2} - d(S^3_{-1}(K)) \le \gamma_4(K).$$

Band Moves & Cobordism

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

Band Moves & Cobordism

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

A non-orientable band move transforms a knot K into a different knot J.

Figure 8 knot to Trefoil

Recall we have been discussing knots K in $S^3 = \partial B^4$ bounding surfaces in B^4 .

Recall we have been discussing knots K in $S^3 = \partial B^4$ bounding surfaces in B^4 .

Recall we have been discussing knots K in $S^3 = \partial B^4$ bounding surfaces in B^4 .

Recall we have been discussing knots K in $S^3 = \partial B^4$ bounding surfaces in B^4 .

Question (Minimal Genus Problem)

What is the minimal genus of an embedded surface which represents a two-dimensional homology class in a closed oriented smooth 4-manifold?

Let K be a knot in S^3 and a F a surface in B^4 with $\partial F = K$.

The 2-handle we attach along K with framing r

The 2-handle we attach along K with framing r

The core of the 2-handle caps the surface.

Let K be a knot in S^3 and a F a surface in B^4 with $\partial F = K$.

The 2-handle we attach along K with framing r

The core of the 2-handle caps the surface.

• There are knots that are not slice, but for some r there is a smoothly embedded S^2 that generates $H_2(X_r(K); \mathbb{Z}) \cong \mathbb{Z}$.

Let K be a knot in S^3 and a F a surface in B^4 with $\partial F = K$.

The 2-handle we attach along K with framing r

The core of the 2-handle caps the surface.

- There are knots that are not slice, but for some r there is a smoothly embedded S^2 that generates $H_2(X_r(K); \mathbb{Z}) \cong \mathbb{Z}$.
- $g_{sh}^r(K)$ is called the *shake genus* of a knot K, and is defined to be the minimum genus of the surface generating $H_2(X_r(K);\mathbb{Z})$. We say K is *shake slice* when $g_{sh}^r(K) = 0$.

Knot Trace - Details

• The boundary of a knot trace is *r*-surgery,

$$\partial(X_r(K)) = S_r^3(K) \coloneqq (S^3 \smallsetminus \nu K) \bigcup D^2 \times S^1$$

Knot Trace - Details

• The boundary of a knot trace is *r*-surgery,

$$\partial(X_r(K)) = S_r^3(K) \coloneqq (S^3 \smallsetminus \nu K) \bigcup D^2 \times S^1$$

• A knot trace is homotopy equivalent to S^2

Knot Trace - Details

• The boundary of a knot trace is *r*-surgery,

$$\partial(X_r(K)) = S_r^3(K) \coloneqq (S^3 \smallsetminus \nu K) \bigcup D^2 \times S^1$$

• A knot trace is homotopy equivalent to S^2

•
$$S^2 \times D^2 = X_0(U)$$

Examples

Akbulut (1976) showed that K is 2-shake slice and J is 1-shake slice using a sequence of blow ups and downs.

Non-Orientable Analog

Question

Do there exist knots K with $\gamma_4(K) > 1$, and some $r \in \mathbb{Z}$, so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2) \cong \mathbb{Z}_2$?

Non-Orientable Analog

Question

Do there exist knots K with $\gamma_4(K) > 1$, and some $r \in \mathbb{Z}$, so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2) \cong \mathbb{Z}_2$?

We define $\gamma_{sh}^r(K)$ to be the minimum genus of the non-orientable surface generating $H_2(X_r(K);\mathbb{Z}_2) \cong \mathbb{Z}_2$.

Just use the existing examples?

Can we use the examples from Akbulut?

Just use the existing examples?

Can we use the examples from Akbulut?

 $\gamma_4(K) = 1 = \gamma_4(J)$, per non-orientable band moves to slice knots.

Just use the existing examples?

Can we use the examples from Akbulut?

 $\gamma_4(K) = 1 = \gamma_4(J)$, per non-orientable band moves to slice knots.

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that $g_{sh}^r(K) = g$ and $\gamma_{sh}^r(K) = 1$.

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that $g_{sh}^r(K) = g$ and $\gamma_{sh}^r(K) = 1$.

- The Trefoil knot has $g_{sh}^0(3_1) = 1$ and $\gamma_4(K) = 1$.
- **2** The Cinquefoil knot has $g_{sh}^0(5_1) = 2$ and $\gamma_4(K) = 1$.

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that $g_{sh}^r(K) = g$ and $\gamma_{sh}^r(K) = 1$.

- The Trefoil knot has $g_{sh}^0(3_1) = 1$ and $\gamma_4(K) = 1$.
- **2** The Cinquefoil knot has $g_{sh}^0(5_1) = 2$ and $\gamma_4(K) = 1$.

(e) For torus knots $T_{3,q}$, we have that for any relatively prime q > 3 and any r < 2(q-1)-1, $g_{sh}^r(T_{3,q}) = g_4(T_{3,q}) = q-1$ and $\gamma_4(K) = 1$. This covers cases for $g \ge 3$.

Theorem (F)

If K is 0-shake slice, then v(K) = 0.

Theorem (F)

If K is 0-shake slice, then v(K) = 0.

• [Cochran-Ray] If K is 0-shake slice, then $\tau(K) = 0$.

Theorem (F)

If K is 0-shake slice, then v(K) = 0.

- [Cochran-Ray] If K is 0-shake slice, then $\tau(K) = 0$.
- [Hayden–Mark–Piccirillo] The concordance invariants τ and ϵ are not 0-trace invariants.

Theorem (F)

If K is 0-shake slice, then v(K) = 0.

- [Cochran-Ray] If K is 0-shake slice, then $\tau(K) = 0$.
- [Hayden–Mark–Piccirillo] The concordance invariants τ and ϵ are not 0-trace invariants.
- [Piccirillo] Rasmussen's s-invariant is not a 0-trace invariant.

I am attempting to answer the following questions.

Question

Do there exist knots K with $\gamma_4(K) > 1$ so that $\gamma_{sh}^r(K) > 1$ for every $r \in \mathbb{Z}$?

I am attempting to answer the following questions.

Question

Do there exist knots K with $\gamma_4(K) > 1$ so that $\gamma_{sh}^r(K) > 1$ for every $r \in \mathbb{Z}$?

Question

Do there exist knots K with $\gamma_4(K) > 1$, and some $r \in \mathbb{Z}$, so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2) \cong \mathbb{Z}_2$?

Thank you for your attention!

