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Background - Slice Knots

Definition (4-Genus)

Given a knot K in S3, the 4-genus, g4(K), is defined to be the minimum
genus among all orientable surfaces S smoothly embedded in B4 so that
∂S =K.

● The 61 knot has g4(61) = 0.

● When g4(K) = 0, we say K is a slice knot.
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Background - Non-Orientable Analog

Definition (Non-Orientable 4 Genus)

Non-Orientable 4 genus is denoted γ4(K) and is defined to be the
minimum first betti number of a surface F smoothly embedded in B4 so
that ∂F =K.
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Motivation

● Does g4(K) provide a bound for γ4(K)?

● What are the obstructions for γ4(K) = 1?
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γ4(K) = 2g4(K) + 1

● The 818 knot has g4(818) = 1 and γ4(818) = 3

● The 51 knot has g4(51) = 2... does this mean γ4(51) = 5?

Thus, γ4(51) = 1 and we have the bound γ4(K) ≤ 2g4(K) + 1.
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Techniques for Calculation

3 main methods for calculating the non-orientable 4-genus of knots.

1 Lower bounds coming from knot invariants

2 Non-orientable band moves

3 Obstructions from the double branched cover
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Knot Invariants

Denote the signature of a knot K as σ(K) and the Arf invariant as Arf(K).

Proposition (Yasuhara)

Given a knot K in S3, if σ(K) + 4Arf(K) ≡ 4 (mod 8), then γ4(K) ≥ 2.

The 4-dimensional clasp number of a knot,
c4(K), is the minimum number of double
points of transversley immersed 2-disks in the
4-ball bounded by K.

Lemma (F)

Given a knot K satisfying σ(K) + 4Arf(K) ≡ 4 (mod 8), and
c4(K) ∈ {1,2}, then γ4(K) = 2.
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Knot Invariants - HFK

The little Upsilon invariant is denoted υ(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

∣υ(K) − σ(K)
2
∣ ≤ γ4(K)

The d-invariant from -1 surgery on a knot in S3 is denoted d(S3
−1(K)).

Theorem (Batson)

For a knot K,
σ(K)
2
− d(S3

−1(K)) ≤ γ4(K).
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Band Moves & Cobordism

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

A non-orientable band move transforms a knot K into a different knot J .

Figure 8 knot to Trefoil
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Transitioning to 4-Manifolds

Recall we have been discussing knots K in S3
= ∂B4 bounding surfaces in B4.

Question (Minimal Genus Problem)

What is the minimal genus of an embedded surface which represents a
two-dimensional homology class in a closed oriented smooth 4-manifold?
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Knot Trace

Let K be a knot in S3

and a F a surface in B4

with ∂F =K.

The 2-handle we attach

along K with framing r
The core of the 2-handle

caps the surface.

● There are knots that are not slice, but for some r there is a smoothly
embedded S2 that generates H2(Xr(K);Z) ≅ Z.

● grsh(K) is called the shake genus of a knot K, and is defined to be
the minimum genus of the surface generating H2(Xr(K);Z). We say
K is shake slice when grsh(K) = 0.
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Knot Trace - Details

● The boundary of a knot trace is r-surgery,

∂(Xr(K)) = S3
r (K) ∶= (S3 ∖ νK)⋃D2 × S1

● A knot trace is homotopy equivalent to S2

● S2
×D2

=X0(U)
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Examples

Akbulut (1976) showed that K is 2-shake slice and J is 1-shake slice using
a sequence of blow ups and downs.
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Non-Orientable Analog

Question

Do there exist knots K with γ4(K) > 1, and some r ∈ Z, so that a
smoothly embedded RP2 generates H2(Xr(K);Z2) ≅ Z2?

We define γr
sh(K) to be the minimum genus of the non-orientable surface

generating H2(Xr(K);Z2) ≅ Z2.
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Just use the existing examples?

Can we use the examples from Akbulut?
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Dissonance

Theorem (F)

For each genus g, there exists a K ∈ S3 and r ∈ Z so that grsh(K) = g and
γr
sh(K) = 1.

1 The Trefoil knot has g0sh(31) = 1 and
γ4(K) = 1.

2 The Cinquefoil knot has g0sh(51) = 2 and
γ4(K) = 1.

3 For torus knots T3,q, we have that for any
relatively prime q > 3 and any
r < 2(q − 1)− 1, grsh(T3,q) = g4(T3,q) = q − 1
and γ4(K) = 1.
This covers cases for g ≥ 3.
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Invariants

Denote ΥK(1) with a little upsilon υ(K).

Theorem (F)

If K is 0-shake slice, then υ(K) = 0.

● [Cochran–Ray] If K is 0-shake slice, then τ(K) = 0.
● [Hayden–Mark–Piccirillo] The concordance invariants τ and ϵ are not
0-trace invariants.

● [Piccirillo] Rasmussen’s s-invariant is not a 0-trace invariant.
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Questions

I am attempting to answer the following questions.

Question

Do there exist knots K with γ4(K) > 1 so that γr
sh(K) > 1 for every r ∈ Z?

Question

Do there exist knots K with γ4(K) > 1, and some r ∈ Z, so that a
smoothly embedded RP2 generates H2(Xr(K);Z2) ≅ Z2?
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Thank You!

Thank you for your attention!
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