* A Quick Intro to knot Concordance r
~ Start at the Start ~
A knot k is an embedding $S^{\prime} \hookrightarrow S^{3}$.
~ examples of knots \sim

$$
0_{1} \circlearrowleft 3_{1} 0
$$

$$
m_{1}^{m=m i r r o r}
$$

$$
6_{1}
$$

the unknot right-handed (trivial knot) trefoil
left-handed trefoil
cinquefoil

stevedore
we will often refer to trots that are not named by their name in the Dolfsen knot table, which is (Crossing number) - index. For example, the 5_{2} knot is drawn below.
5_{2} knot:

note the deference from the 6_{1} (Stevedore) knot.

* determining when 2 knots are "the same" is quite a challenge, but we can Mol surfaces to build a type of equivalence between knots, known as concordance
* All knots bound surfaces, but such surfaces come in deferent flavors:
(1) Orientable surfaces, seifert surfaces, live in 3-dimensional space.
(2) Surfaces that live in the 4-bau, B^{4}.
(3) Two knots can co-bound a surface (knot concordance ß cobordism).
(1) Seifert surfnui (always orientable!)
~ there is an algorithm (seiferts Algorithm) that can be used to construct such surface. We won't go over the algonterm in there notes-
example:

the unknot bounds a disk

the trefoil bounding a genus 1 orientable surface

this is an example of a knot bounding a disk with ribbon singularities. knots that bound disks with ribbon singularities are called ribbon knots.
(2) knots bounding surface in B^{A}
~ the set up
we know S^{3} bounds B^{4}, so k in S^{3} bounds a surface F in B^{4}.

~A 3D Analog ~
* consider the unknot, drawn in 2-dimensional space.
the unknot is the boundary of a torus (with boundary)
 this cannot be drawn in 2D-space!
so we have the unknot in S^{2} bounding a toms (with bdry) in B^{3} :

call this F, the surface bounded boy the knot
~ We thy to draw a similar picture for knots in S^{3} and surfaces in B^{4}, but as we cannot draw 4D pictures, we lower every thing by 1 dimension.

3 the 3-sphere drawn as a 2D sphere
K the knot is $s^{1} \hookrightarrow \delta^{3}$ drawn as $s^{0} \hookrightarrow \delta^{2}, 0$-dimensional boundary of a 1 -dimensional object.

Fa 2D Disk drawn as a line (1D) with endpoints the knot the 4-ball drawn as a 3D ball
w these schematics are to help us visualize and not to be 1007% accurate.
\sim notes on F :
all of our embed dangs (for these notes) are smooth. Thus, we do not have distes lite.

R A knot is called slice of it bounds a disk D^{2} in B^{4}. eg, the unknot is slice. the stevedove $\left(66_{1}\right)$ knot is also slice.
(3) Two knots wo-bounding a surface.
~ simple example

* Two knots k and J are concordant if there is a smooth embedding of a germs zero surface into $s^{3} \times[0,1]$ where k is in $s^{3} \times\{0\}$ and J is in $s^{3} \times\{1\}$.

the surface can have saddles (and litily will).
interval
\& the germs 0 surface is often called "an embedded annnels."
aa note on the drawing
when we draw arbitrary knots, we do

a box with an arc why?
take a simple example: O
in the box is the knot.
* The knots k and J are concordant if $K \#-J$ is slice ~ connect sum of knots. trefoil \# trefoil

~ drawn abstractly: $k=J$
~ What is -J? The mirror reverse

Θ
trefoil $=k$ reverie $=k^{r} \quad$ mirror: $m k \quad \underset{\text { reverse }}{\text { mirror }}=-k \quad\left(m k^{r}\right)$
*knot concordance is an equivalence relation. Try to prove it!
(1) Show reflexive: $k \sim k$ tint: $k \#-k$
(2) show symmetric: $k \sim J \Rightarrow J \sim k$. Hint: draw a picture.
(3) Show transitive: $k \sim J, J \sim m \Rightarrow k \sim m$.

R We are following "A survey of classical knot concordance" -chuck livingston.
*Thy 2.2. The set of concordance classes of knots forms a countable abelian group, denoted l, with operation connect sum and the unknot representing the identity.
~ can you show e is a group? inverse?
RECALL: slice knots bound a smoothly embedded disk in B^{4}.
~ slice knots are concordant to the unknot ~

* deth 2.3: A knot k is called ribbon if it bounds an embedded disk D in B^{4} for which the radial function on the ball restricts to a smooth morse function with no local maxima in the interior of D.
eg, no index 2 critical points.
Slice-ribbon conjecture: A knot is slice \Leftrightarrow A knot is ribbon \rightarrow still open! §2.2 -Algebraic Concordance
*Defh 2.4: k is a knot with Seifert surface F. A seifert pairing is a bilinear map

$$
V: H_{1}(F) \times H_{1}(F) \longrightarrow \mathbb{Z}
$$

where $v(x, y)=l k(x, i x y)$ sometimes written $\operatorname{lk}\left(x, y^{+}\right)$ $i_{x} y$. or y^{+}denotes the positive push off. ix is the map induced by $i: F \rightarrow S^{3}-F$.
example trefoil

direction for push-off

loops:

$$
\begin{array}{rcc}
\operatorname{lk}\left(x, x^{+}\right)=-1 & \text { sk }\left(x, y^{+}\right)=1 & \text { sefert } \\
\text { lek }\left(y, y^{+}\right)=-1 & \text { matrix } \\
\text { elk }\left(y, x^{+}\right)=0 & & {\left[\begin{array}{cc}
-1 & 1 \\
0 & -1
\end{array}\right]} \\
& \text { note: } \\
& & \\
& \text { negative } & \text { positive } \\
& \text { crossing }
\end{array}
$$

