Non-Orientable Surfaces in Knot Traces

Megan Fairchild

Louisiana State University

May 2024

Megan Fairchild Non-Orientable Surfaces in Knot Traces

• Given X is a 4-manifold, every element of $H_2(X;\mathbb{Z})$ can be represented by an embedded surface.

 Given X is a 4-manifold, every element of H₂(X; Z) can be represented by an embedded surface. What is the minimum genus of such a surface?

- Given X is a 4-manifold, every element of H₂(X; Z) can be represented by an embedded surface. What is the minimum genus of such a surface?
- Knots provide a method of constructing 4-manifolds so that the surface generating the second homology has arbitrarily high genus.

- Given X is a 4-manifold, every element of H₂(X; Z) can be represented by an embedded surface. What is the minimum genus of such a surface?
- Knots provide a method of constructing 4-manifolds so that the surface generating the second homology has arbitrarily high genus.
- What about the non-orientable surface generating $H_2(X;\mathbb{Z}_2)$?

Constructing the Knot Trace

• Let K be a knot in $S^3 = \partial B^4$ and F be a non-orientable surface in B^4 so that $\partial F = K$.

Constructing the Knot Trace

- Let K be a knot in $S^3 = \partial B^4$ and F be a non-orientable surface in B^4 so that $\partial F = K$.
- Denote $X_r(K)$ as the 4-manifold obtained from attaching an *r*-framed 2-handle along *K*.

Constructing the Knot Trace

- Let K be a knot in $S^3 = \partial B^4$ and F be a non-orientable surface in B^4 so that $\partial F = K$.
- Denote $X_r(K)$ as the 4-manifold obtained from attaching an *r*-framed 2-handle along K.

• $X_r(K)$ is called the *r*-trace of K.

Definition (Shake Genus)

The shake-genus of K, $g_{sh}^r(K)$, is the genus of the surface generating $H_2(X_r(K);\mathbb{Z})\cong\mathbb{Z}$. A knot is called *r*-shake slice if $g_{sh}^r(K) = 0$ for some $r \in \mathbb{Z}$.

Definition (Shake Genus)

The shake-genus of K, $g_{sh}^r(K)$, is the genus of the surface generating $H_2(X_r(K);\mathbb{Z})\cong\mathbb{Z}$. A knot is called *r*-shake slice if $g_{sh}^r(K) = 0$ for some $r \in \mathbb{Z}$.

Definition (Non-Orientable Shake Genus)

The non-orientable shake-genus of K, $\gamma_{sh}^r(K)$, is the genus of the non-orientable surface generating $H_2(X_r(K); \mathbb{Z}_2) \cong \mathbb{Z}_2$.

Definition (Shake Genus)

The shake-genus of K, $g_{sh}^r(K)$, is the genus of the surface generating $H_2(X_r(K);\mathbb{Z})\cong\mathbb{Z}$. A knot is called *r*-shake slice if $g_{sh}^r(K)=0$ for some $r\in\mathbb{Z}$.

Definition (Non-Orientable Shake Genus)

The non-orientable shake-genus of K, $\gamma_{sh}^r(K)$, is the genus of the non-orientable surface generating $H_2(X_r(K); \mathbb{Z}_2) \cong \mathbb{Z}_2$.

Lemma (F)

For any knot K, $\gamma_{sh}^r(K) \leq 2g_{sh}^r(K) + 1$.

Preliminary Results

Question

Given a knot K in S^3 such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2)$?

Preliminary Results

Question

Given a knot K in S^3 such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2)$?

Theorem (F)

There exists 4-manifolds X so that the genus of the orientable surface S generating $H_2(X;\mathbb{Z}) \cong \mathbb{Z}$ is strictly greater than the genus of the non-orientable surface F generating $H_2(X;\mathbb{Z}_2) \cong \mathbb{Z}_2$.

Question

Given a knot K in S^3 such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R}P^2$ generates $H_2(X_r(K);\mathbb{Z}_2)$?

Theorem (F)

There exists 4-manifolds X so that the genus of the orientable surface S generating $H_2(X;\mathbb{Z}) \cong \mathbb{Z}$ is strictly greater than the genus of the non-orientable surface F generating $H_2(X;\mathbb{Z}_2) \cong \mathbb{Z}_2$.

Proposition (F)

The obstructions for a knot being r-shake slice do not hold in the non-orientable setting.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

- The Trefoil knot has $g_{sh}^r(K) = g_4(K) = 1$ for every r and $\gamma_4(K) = 1$.
- **2** The Cinquefoil knot has $g_{sh}^r(K) = g_4(K) = 2$ for every r and $\gamma_4(K) = 1$.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

- The Trefoil knot has $g_{sh}^r(K) = g_4(K) = 1$ for every r and $\gamma_4(K) = 1$.
- **2** The Cinquefoil knot has $g_{sh}^r(K) = g_4(K) = 2$ for every r and $\gamma_4(K) = 1$.
- (3) For torus knots $T_{3,q}$, we have that for any relatively prime q > 3 and any r < 2(q-1)-1, $g_{sh}^r(T_{3,q}) = g_4(T_{3,q}) = q-1$ and $\gamma_4(K) = 1$. This covers cases for $g \ge 3$.

Satellite Knots

• Consider a winding number one pattern P with $\tilde{P} = P(U)$ a ribbon knot.

Satellite Knots

- Consider a winding number one pattern P with $\tilde{P} = P(U)$ a ribbon knot.
- [Cochran-Ray] A knot K is r-shake slice if and only if there exists a winding number one pattern P, with \tilde{P} ribbon, such that $P_r(K)$ is slice.

Satellite Knots

- Consider a winding number one pattern P with $\tilde{P} = P(U)$ a ribbon knot.
- [Cochran-Ray] A knot K is r-shake slice if and only if there exists a winding number one pattern P, with \tilde{P} ribbon, such that $P_r(K)$ is slice.

Theorem (F)

Suppose P is a winding number one pattern with \tilde{P} slice. Given a knot K is related to a knot J by one non-orientable band move, then P(K) is related to P(J) by one non-orientable band move.

Proposition (F)

Given the Mazur pattern P, $\gamma_4(P_r(K)) \leq \gamma_4(K) + 1$ for any knot K and all $r \in \mathbb{Z}$.

Proposition (F)

Given the Mazur pattern P, $\gamma_4(P_r(K)) \leq \gamma_4(K) + 1$ for any knot K and all $r \in \mathbb{Z}$.

Corollary (F)

Given the pattern P is the Mazur pattern, $\gamma_4(\tilde{P}_r) = 1$ for all $r \in \mathbb{Z}$.

Question

Are there knots where $\gamma_{sh}^r(K) > 1$ for every r?