Non-Orientable Surfaces in Knot Traces

Megan Fairchild
Louisiana State University

May 2024

Motivation

- Given X is a 4-manifold, every element of $H_{2}(X ; \mathbb{Z})$ can be represented by an embedded surface.

Motivation

- Given X is a 4-manifold, every element of $H_{2}(X ; \mathbb{Z})$ can be represented by an embedded surface. What is the minimum genus of such a surface?

Motivation

- Given X is a 4-manifold, every element of $H_{2}(X ; \mathbb{Z})$ can be represented by an embedded surface. What is the minimum genus of such a surface?
- Knots provide a method of constructing 4-manifolds so that the surface generating the second homology has arbitrarily high genus.

Motivation

- Given X is a 4-manifold, every element of $H_{2}(X ; \mathbb{Z})$ can be represented by an embedded surface. What is the minimum genus of such a surface?
- Knots provide a method of constructing 4-manifolds so that the surface generating the second homology has arbitrarily high genus.
- What about the non-orientable surface generating $H_{2}\left(X ; \mathbb{Z}_{2}\right)$?

Constructing the Knot Trace

- Let K be a knot in $S^{3}=\partial B^{4}$ and F be a non-orientable surface in B^{4} so that $\partial F=K$.

Constructing the Knot Trace

- Let K be a knot in $S^{3}=\partial B^{4}$ and F be a non-orientable surface in B^{4} so that $\partial F=K$.
- Denote $X_{r}(K)$ as the 4-manifold obtained from attaching an r-framed 2-handle along K.

Constructing the Knot Trace

- Let K be a knot in $S^{3}=\partial B^{4}$ and F be a non-orientable surface in B^{4} so that $\partial F=K$.
- Denote $X_{r}(K)$ as the 4-manifold obtained from attaching an r-framed 2-handle along K.

- $X_{r}(K)$ is called the r-trace of K.

Background

Definition (Shake Genus)

The shake-genus of $K, g_{s h}^{r}(K)$, is the genus of the surface generating $H_{2}\left(X_{r}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$. A knot is called r-shake slice if $g_{s h}^{r}(K)=0$ for some $r \in \mathbb{Z}$.

Background

Definition (Shake Genus)

The shake-genus of $K, g_{s h}^{r}(K)$, is the genus of the surface generating $H_{2}\left(X_{r}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$. A knot is called r-shake slice if $g_{s h}^{r}(K)=0$ for some $r \in \mathbb{Z}$.

Definition (Non-Orientable Shake Genus)

The non-orientable shake-genus of $K, \gamma_{s h}^{r}(K)$, is the genus of the non-orientable surface generating $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$.

Background

Definition (Shake Genus)

The shake-genus of $K, g_{s h}^{r}(K)$, is the genus of the surface generating $H_{2}\left(X_{r}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$. A knot is called r-shake slice if $g_{s h}^{r}(K)=0$ for some $r \in \mathbb{Z}$.

Definition (Non-Orientable Shake Genus)

The non-orientable shake-genus of $K, \gamma_{s h}^{r}(K)$, is the genus of the non-orientable surface generating $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$.

Lemma (F)

For any knot $K, \gamma_{s h}^{r}(K) \leq 2 g_{s h}^{r}(K)+1$.

Preliminary Results

Question

Given a knot K in S^{3} such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R} P^{2}$ generates $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$?

Preliminary Results

Question

Given a knot K in S^{3} such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R} P^{2}$ generates $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$?

Theorem (F)

There exists 4-manifolds X so that the genus of the orientable surface S generating $H_{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$ is strictly greater than the genus of the non-orientable surface F generating $H_{2}\left(X ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$.

Preliminary Results

Question

Given a knot K in S^{3} such that K does not bound a Möbius band, does there exist an $r \in \mathbb{Z}$ so that a smoothly embedded $\mathbb{R} P^{2}$ generates $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$?

Theorem (F)

There exists 4 -manifolds X so that the genus of the orientable surface S generating $H_{2}(X ; \mathbb{Z}) \cong \mathbb{Z}$ is strictly greater than the genus of the non-orientable surface F generating $H_{2}\left(X ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$.

Proposition (F)

The obstructions for a knot being r-shake slice do not hold in the non-orientable setting.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

(1) The Trefoil knot has $g_{s h}^{r}(K)=g_{4}(K)=1$ for every r and $\gamma_{4}(K)=1$.
(2) The Cinquefoil knot has
$g_{s h}^{r}(K)=g_{4}(K)=2$ for every r and $\gamma_{4}(K)=1$.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

(1) The Trefoil knot has $g_{s h}^{r}(K)=g_{4}(K)=1$ for every r and $\gamma_{4}(K)=1$.
(2) The Cinquefoil knot has
$g_{s h}^{r}(K)=g_{4}(K)=2$ for every r and $\gamma_{4}(K)=1$.
(3 For torus knots $T_{3, q}$, we have that for any relatively prime $q>3$ and any
$r<2(q-1)-1, g_{s h}^{r}\left(T_{3, q}\right)=g_{4}\left(T_{3, q}\right)=q-1$ and $\gamma_{4}(K)=1$.
This covers cases for $g \geq 3$.

Satellite Knots

- Consider a winding number one pattern P with $\tilde{P}=P(U)$ a ribbon knot.

Satellite Knots

- Consider a winding number one pattern P with $\tilde{P}=P(U)$ a ribbon knot.
- [Cochran-Ray] A knot K is r-shake slice if and only if there exists a winding number one pattern P, with \tilde{P} ribbon, such that $P_{r}(K)$ is slice.

Satellite Knots

- Consider a winding number one pattern P with $\tilde{P}=P(U)$ a ribbon knot.
- [Cochran-Ray] A knot K is r-shake slice if and only if there exists a winding number one pattern P, with \tilde{P} ribbon, such that $P_{r}(K)$ is slice.

Theorem (F)

Suppose P is a winding number one pattern with \tilde{P} slice. Given a knot K is related to a knot J by one non-orientable band move, then $P(K)$ is related to $P(J)$ by one non-orientable band move.

Satellite Results

Proposition (F)

Given the the Mazur pattern $P, \gamma_{4}\left(P_{r}(K)\right) \leq \gamma_{4}(K)+1$ for any knot K and all $r \in \mathbb{Z}$.

Satellite Results

Proposition (F)

Given the the Mazur pattern $P, \gamma_{4}\left(P_{r}(K)\right) \leq \gamma_{4}(K)+1$ for any knot K and all $r \in \mathbb{Z}$.

Corollary (F)

Given the pattern P is the Mazur pattern, $\gamma_{4}\left(\tilde{P}_{r}\right)=1$ for all $r \in \mathbb{Z}$.

Thank You

Question

Are there knots where $\gamma_{s h}^{r}(K)>1$ for every r ?

