Non-Orientable 4 Genus of Knots

Megan Fairchild
Merrick Dodge (Iowa), Shuo Liu (Maryland), Sam Miller (Hawaii)
Louisiana State University

June 2024

Background - Slice Knots

Background - Slice Knots

Background - Slice Knots

Definition (4-Genus)

Given a knot K in S^{3}, the 4 -genus, $g_{4}(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^{4} so that $\partial S=K$.

Background - Slice Knots

Definition (4-Genus)

Given a knot K in S^{3}, the 4 -genus, $g_{4}(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^{4} so that $\partial S=K$.

- The 6_{1} knot has $g_{4}\left(6_{1}\right)=0$.

Background - Slice Knots

Definition (4-Genus)

Given a knot K in S^{3}, the 4 -genus, $g_{4}(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^{4} so that $\partial S=K$.

- The 6_{1} knot has $g_{4}\left(6_{1}\right)=0$.
- When $g_{4}(K)=0$, we say K is a slice knot.

Background - Slice Knots

The orientable band move from the 6_{1} knot to 2 unlinked unknots.

Background - Slice Knots

The orientable band move from the 6_{1} knot to 2 unlinked unknots.

A view of the knot bounding a disk in B^{4}.

Background - Non-Orientable Analog

Definition (Non-Orientable 4 Genus)

Non-Orientable 4-genus is denoted $\gamma_{4}(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^{4} so that $\partial F=K$.

Background - Non-Orientable Analog

Definition (Non-Orientable 4 Genus)

Non-Orientable 4-genus is denoted $\gamma_{4}(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^{4} so that $\partial F=K$.

Motivation

- Does $g_{4}(K)$ provide a bound for $\gamma_{4}(K)$?

Motivation

- Does $g_{4}(K)$ provide a bound for $\gamma_{4}(K)$?
- Note that $\left(\#_{g} T^{2}\right) \# \mathbb{R} \mathrm{P}^{2}=\#_{2 g+1} \mathbb{R} \mathrm{P}^{2}$.

Motivation

- Does $g_{4}(K)$ provide a bound for $\gamma_{4}(K)$?
- Note that $\left(\#_{g} T^{2}\right) \# \mathbb{R} \mathrm{P}^{2}=\#_{2 g+1} \mathbb{R} \mathrm{P}^{2}$.
- Does $\gamma_{4}(K)=2 g_{4}(K)+1$?

$\gamma_{4}(K)=2 g_{4}(K)+1$

- The 8_{18} knot has $g_{4}\left(8_{18}\right)=1$ and $\gamma_{4}\left(8_{18}\right)=3$

$\gamma_{4}(K)=2 g_{4}(K)+1$

- The 8_{18} knot has $g_{4}\left(8_{18}\right)=1$ and $\gamma_{4}\left(8_{18}\right)=3$

- The 5_{1} knot has $g_{4}\left(5_{1}\right)=2 \ldots$

$\gamma_{4}(K)=2 g_{4}(K)+1$

- The 8_{18} knot has $g_{4}\left(8_{18}\right)=1$ and $\gamma_{4}\left(8_{18}\right)=3$

- The 5_{1} knot has $g_{4}\left(5_{1}\right)=2 \ldots$ does this mean $\gamma_{4}\left(5_{1}\right)=5$?

$\gamma_{4}(K)=2 g_{4}(K)+1$

- The 8_{18} knot has $g_{4}\left(8_{18}\right)=1$ and $\gamma_{4}\left(8_{18}\right)=3$

- The 5_{1} knot has $g_{4}\left(5_{1}\right)=2 \ldots$ does this mean $\gamma_{4}\left(5_{1}\right)=5$?

Thus, $\gamma_{4}\left(5_{1}\right)=1$ and we have the bound $\gamma_{4}(K) \leq 2 g_{4}(K)+1$.

Main Results

Theorem (F)

For the 185 non-alternating 11 crossing knots,
(a) 121 knots have $\gamma_{4}(K)=1$
(b) 58 knots have $\gamma_{4}(K)=2$

The remaining 6 knots have $\gamma_{4}(K)=1$ or 2 .

Techniques for Calculation

3 main methods for calculating the non-orientable 4 -genus of knots.

Techniques for Calculation

3 main methods for calculating the non-orientable 4 -genus of knots.
(1) Lower bounds coming from knot invariants

Techniques for Calculation

3 main methods for calculating the non-orientable 4 -genus of knots.
(1) Lower bounds coming from knot invariants
(2) Non-orientable band moves

Techniques for Calculation

3 main methods for calculating the non-orientable 4 -genus of knots.
(1) Lower bounds coming from knot invariants
(2) Non-orientable band moves
(3) Obstructions from the double branched cover

Knot Invariants

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

Knot Invariants

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

Proposition (Yasuhara)

Given a knot K in S^{3}, if $\sigma(K)+4 \operatorname{Arf}(\mathrm{~K}) \equiv 4(\bmod 8)$, then $\gamma_{4}(K) \geq 2$.

Knot Invariants

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

Proposition (Yasuhara)

Given a knot K in S^{3}, if $\sigma(K)+4 \operatorname{Arf}(\mathrm{~K}) \equiv 4(\bmod 8)$, then $\gamma_{4}(K) \geq 2$.

Example: The figure 8 knot has $\sigma\left(4_{1}\right)=0$ and $\operatorname{Arf}\left(4_{1}\right)=1$ and thus $\gamma_{4}\left(4_{1}\right) \geq 2$.

Knot Invariants

Knot Invariants

The 4-dimensional clasp number of a knot, $c_{4}(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4 -ball bounded by K.

Knot Invariants

The 4-dimensional clasp number of a knot, $c_{4}(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4 -ball bounded by K.

Proposition (Murakami-Yasuhara)

For any knot K,

$$
\gamma_{4}(K) \leq \begin{cases}c_{4}(K) & \text { if } c_{4}(K) \text { is even and } c_{4}(K) \neq 2 \\ c_{4}(K)+1 & \text { otherwise }\end{cases}
$$

Knot Invariants

The 4-dimensional clasp number of a knot, $c_{4}(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4 -ball bounded by K.

Proposition (Murakami-Yasuhara)

For any knot K,

$$
\gamma_{4}(K) \leq \begin{cases}c_{4}(K) & \text { if } c_{4}(K) \text { is even and } c_{4}(K) \neq 2 \\ c_{4}(K)+1 & \text { otherwise }\end{cases}
$$

Question: Is there any way to improve this for a precise result?

Knot Invariants

Lemma (F)

Given a knot K satisfying $\sigma(K)+4 \operatorname{Arf}(\mathrm{~K}) \equiv 4(\bmod 8)$, and $c_{4}(K) \in\{1,2\}$, then $\gamma_{4}(K)=2$.

Knot Invariants - HFK

The little Upsilon invariant is denoted $v(K)$.

Proposition (Ozváth-Stipsicz-Szabó)

Given K is a knot,

$$
\left|v(K)-\frac{\sigma(K)}{2}\right| \leq \gamma_{4}(K)
$$

Knot Invariants - HFK

The little Upsilon invariant is denoted $v(K)$.

Proposition (Ozváth-Stipsicz-Szabó)

Given K is a knot,

$$
\left|v(K)-\frac{\sigma(K)}{2}\right| \leq \gamma_{4}(K)
$$

There is a recursive formula for torus knot calculations.

Knot Invariants - HFK

The d-invariant from - 1 surgery on a knot in S^{3} is denoted $d\left(S_{-1}^{3}(K)\right)$.

Knot Invariants - HFK

The d-invariant from -1 surgery on a knot in S^{3} is denoted $d\left(S_{-1}^{3}(K)\right)$.

Theorem (Batson)

For a knot K,

$$
\frac{\sigma(K)}{2}-d\left(S_{-1}^{3}(K)\right) \leq \gamma_{4}(K) .
$$

Knot Invariants - HFK

The d-invariant from -1 surgery on a knot in S^{3} is denoted $d\left(S_{-1}^{3}(K)\right)$.

Theorem (Batson)

For a knot K,

$$
\frac{\sigma(K)}{2}-d\left(S_{-1}^{3}(K)\right) \leq \gamma_{4}(K) .
$$

Theorem (F-Garcia-Murphy-Percle)

For a torus knot $T_{p, q}$ where $p<q$,

$$
d\left(S_{-1}^{3}\left(T_{p, q}\right)\right)=2\left(\left\lfloor\frac{p}{2}\right\rfloor+\sum_{k=0}^{\left\lfloor\frac{p}{2}\right\rfloor-1}\left\lfloor\frac{(p-1-2 k) q-p-1}{2 p}\right\rfloor\right) .
$$

Orientable Band Moves

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

Orientable Band Moves

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link
A non-orientable band move transforms a knot K into a different knot J.

Figure 8 knot to Trefoil

Non-Orientable Band Moves

Proposition (Jabuka-Kelly)

If the knots K and K^{\prime} are related by a non-oriented band move, then

$$
\gamma_{4}(K) \leq \gamma_{4}\left(K^{\prime}\right)+1
$$

If a knot K is related to a slice knot K^{\prime} by a non-oriented band move, then $\gamma_{4}(K)=1$.

Non-Orientable Band Moves

Proposition (Jabuka-Kelly)

If the knots K and K^{\prime} are related by a non-oriented band move, then

$$
\gamma_{4}(K) \leq \gamma_{4}\left(K^{\prime}\right)+1
$$

If a knot K is related to a slice knot K^{\prime} by a non-oriented band move, then $\gamma_{4}(K)=1$.

Example: The figure 8 knot, 4_{1}, has $\gamma_{4}\left(4_{1}\right) \geq 2$.

Non-Orientable Band Moves

Proposition (Jabuka-Kelly)

If the knots K and K^{\prime} are related by a non-oriented band move, then

$$
\gamma_{4}(K) \leq \gamma_{4}\left(K^{\prime}\right)+1
$$

If a knot K is related to a slice knot K^{\prime} by a non-oriented band move, then $\gamma_{4}(K)=1$.

Example: The figure 8 knot, 4_{1}, has $\gamma_{4}\left(4_{1}\right) \geq 2.4_{1}$ is related to the trefoil by one non-oriented band move.

Non-Orientable Band Moves

Proposition (Jabuka-Kelly)

If the knots K and K^{\prime} are related by a non-oriented band move, then

$$
\gamma_{4}(K) \leq \gamma_{4}\left(K^{\prime}\right)+1
$$

If a knot K is related to a slice knot K^{\prime} by a non-oriented band move, then $\gamma_{4}(K)=1$.

Example: The figure 8 knot, 4_{1}, has $\gamma_{4}\left(4_{1}\right) \geq 2.4_{1}$ is related to the trefoil by one non-oriented band move. Thus, $\gamma_{4}\left(4_{1}\right)=2$.

Double Branched Cover

Denote the double branched cover of S^{3} over a knot K as $D_{K}\left(S^{3}\right)$.

Double Branched Cover

Denote the double branched cover of S^{3} over a knot K as $D_{K}\left(S^{3}\right)$.

Double Branched Cover

Denote the double branched cover of S^{3} over a knot K as $D_{K}\left(S^{3}\right)$.

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3-sphere, we may define a linking form

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3-sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3-sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Given x and y are both 1-cycles,

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3-sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Given x and y are both 1-cycles, suppose $n x$ bounds a 2-chain c for some $n \in \mathbb{Z}$

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3 -sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Given x and y are both 1-cycles, suppose $n x$ bounds a 2 -chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3-sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Given x and y are both 1-cycles, suppose $n x$ bounds a 2 -chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

$$
\lambda([x],[y])=\frac{c \cdot y}{n} \in \mathbb{Q} / \mathbb{Z}
$$

Double Branched Cover

As $D_{K}\left(S^{3}\right)$ is a rational homology 3 -sphere, we may define a linking form

$$
\lambda: H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \times H_{1}\left(D_{K}\left(S^{3}\right) ; \mathbb{Z}\right) \rightarrow \mathbb{Q} / \mathbb{Z}
$$

Given x and y are both 1 -cycles, suppose $n x$ bounds a 2 -chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

$$
\lambda([x],[y])=\frac{c \cdot y}{n} \in \mathbb{Q} / \mathbb{Z}
$$

The linking form can be directly calculated from a checkerboard coloring of a knot.

Double Branched Cover

Corollary (Gilmer-Livingston)

Suppose that $H_{1}\left(D_{K}\left(S^{3}\right)\right)=\mathbb{Z}_{n}$ where n is the product of primes, all with odd exponent. Then if K bounds a Möbius band in B^{4}, there is a generator $a \in H_{1}\left(D_{K}\left(S^{3}\right)\right)$ such that $\lambda(a, a)= \pm 1 / n$

Double Branched Cover

Corollary (Gilmer-Livingston)

Suppose that $H_{1}\left(D_{K}\left(S^{3}\right)\right)=\mathbb{Z}_{n}$ where n is the product of primes, all with odd exponent. Then if K bounds a Möbius band in B^{4}, there is a generator $a \in H_{1}\left(D_{K}\left(S^{3}\right)\right)$ such that $\lambda(a, a)= \pm 1 / n$

Corollary (F)

Let K in S^{3} be a knot and suppose that $H_{1}\left(D_{K}\left(S^{3}\right)\right)=\mathbb{Z}_{p^{2} q}$ where p is prime and q is a product of primes, all with odd exponent. Then if K bounds a Möbius band in B^{4}, there is a generator $a \in H_{1}\left(D_{K}\left(S^{3}\right)\right)$ such that either $\lambda(a, a)= \pm 1 / p^{2} q$ or $\lambda(a, a)= \pm 1 / q$.

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$.

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$. Why was I unable to state whether the non-orientable 4 -genus is 1 or 2 ?

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$. Why was I unable to state whether the non-orientable 4 -genus is 1 or 2 ?
(1) The knot invariants do not offer an obstruction.

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$. Why was I unable to state whether the non-orientable 4 -genus is 1 or 2 ?
(1) The knot invariants do not offer an obstruction.
(2) Many, many non-orientable band moves have been attempted, resulting in the bound $\gamma_{4}(K) \leq 2$ for all 6 knots.

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$. Why was I unable to state whether the non-orientable 4 -genus is 1 or 2 ?
(1) The knot invariants do not offer an obstruction.
(2) Many, many non-orientable band moves have been attempted, resulting in the bound $\gamma_{4}(K) \leq 2$ for all 6 knots.
(3) The linking form on the double branched cover does not offer an obstruction.

The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_{4}(K) \in\{1,2\}$. Why was I unable to state whether the non-orientable 4 -genus is 1 or 2 ?
(1) The knot invariants do not offer an obstruction.
(2) Many, many non-orientable band moves have been attempted, resulting in the bound $\gamma_{4}(K) \leq 2$ for all 6 knots.
(3) The linking form on the double branched cover does not offer an obstruction.
Thus, the knots $11 n_{17}, 11 n_{40}, 11 n_{159}, 11 n_{166}, 11 n_{177}$ and $11 n_{178}$ all have $\gamma_{4}(K)=1$ or 2 .

Future Work

- Let K be a knot in S^{3} and a F a non-orientable surface in B^{4} where $\partial F=K$.
- One may construct a knot trace, denoted $X_{r}(K)$, by attaching an r-framed 2-handle to B^{4} along a knot K.

Future Work

- Let K be a knot in S^{3} and a F a non-orientable surface in B^{4} where $\partial F=K$.
- One may construct a knot trace, denoted $X_{r}(K)$, by attaching an r-framed 2-handle to B^{4} along a knot K.
- There are knots that are not slice, but for some r there is a smoothly embedded S^{2} that generates $H_{2}\left(X_{r}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$.

Future Work

- Let K be a knot in S^{3} and a F a non-orientable surface in B^{4} where $\partial F=K$.
- One may construct a knot trace, denoted $X_{r}(K)$, by attaching an r-framed 2-handle to B^{4} along a knot K.
- There are knots that are not slice, but for some r there is a smoothly embedded S^{2} that generates $H_{2}\left(X_{r}(K) ; \mathbb{Z}\right) \cong \mathbb{Z}$.

Question

Do there exist knots K with $\gamma_{4}(K)>1$, and some $r \in \mathbb{Z}$, so that a smoothly embedded $\mathbb{R} P^{2}$ generated $H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right) \cong \mathbb{Z}_{2}$?

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

(1) The Trefoil knot has $=g_{4}(K)=1$ for every r and $\gamma_{4}(K)=1$.
(2) The Cinquefoil knot has $=g_{4}(K)=2$ for every r and $\gamma_{4}(K)=1$.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^{3}$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_{2}\left(X_{r}(K) ; \mathbb{Z}\right)$ is g and the genus of the non-orientable surface $F \in H_{2}\left(X_{r}(K) ; \mathbb{Z}_{2}\right)$ is 1 .

(1) The Trefoil knot has $=g_{4}(K)=1$ for every r and $\gamma_{4}(K)=1$.
(2) The Cinquefoil knot has $=g_{4}(K)=2$ for every r and $\gamma_{4}(K)=1$.
(3) For torus knots $T_{3, q}$, we have that for any relatively prime $q>3$ and any $r<2(q-1)-1, g_{s h}^{r}\left(T_{3, q}\right)=g_{4}\left(T_{3, q}\right)=q-1$ and $\gamma_{4}(K)=1$.
This covers cases for $g \geq 3$.

Thank You!

Thank you for your attention!

