Non-Orientable 4 Genus of Knots

Megan Fairchild Merrick Dodge (Iowa), Shuo Liu (Maryland), Sam Miller (Hawaii)

Louisiana State University

June 2024

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

• The 6_1 knot has $g_4(6_1) = 0$.

Definition (4-Genus)

Given a knot K in S^3 , the 4-genus, $g_4(K)$, is defined to be the minimum genus among all orientable surfaces S smoothly embedded in B^4 so that $\partial S = K$.

- The 6_1 knot has $g_4(6_1) = 0$.
- When $g_4(K) = 0$, we say K is a slice knot.

The orientable band move from the 6_1 knot to 2 unlinked unknots.

The orientable band move from the 6_1 knot to 2 unlinked unknots.

A view of the knot bounding a disk in B^4 .

Definition (Non-Orientable 4 Genus)

Non-Orientable 4-genus is denoted $\gamma_4(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^4 so that $\partial F = K$.

Definition (Non-Orientable 4 Genus)

Non-Orientable 4-genus is denoted $\gamma_4(K)$ and is defined to be the minimum first betti number of a surface F smoothly embedded in B^4 so that $\partial F = K$.

• Does $g_4(K)$ provide a bound for $\gamma_4(K)$?

- Does $g_4(K)$ provide a bound for $\gamma_4(K)$?
- Note that $(\#_g T^2) \# \mathbb{RP}^2 = \#_{2g+1} \mathbb{RP}^2$.

- Does $g_4(K)$ provide a bound for $\gamma_4(K)$?
- Note that $(\#_g T^2) \# \mathbb{RP}^2 = \#_{2g+1} \mathbb{RP}^2$.
- Does $\gamma_4(K) = 2g_4(K) + 1?$

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$ does this mean $\gamma_4(5_1) = 5$?

• The 8_{18} knot has $g_4(8_{18}) = 1$ and $\gamma_4(8_{18}) = 3$

• The 5_1 knot has $g_4(5_1) = 2...$ does this mean $\gamma_4(5_1) = 5$?

Thus, $\gamma_4(5_1) = 1$ and we have the bound $\gamma_4(K) \leq 2g_4(K) + 1$.

Main Results

Theorem (F)

For the 185 non-alternating 11 crossing knots,

- a 121 knots have $\gamma_4(K) = 1$
- **b** 58 knots have $\gamma_4(K) = 2$

The remaining 6 knots have $\gamma_4(K) = 1$ or 2.

Techniques for Calculation

3 main methods for calculating the non-orientable 4-genus of knots.

3 main methods for calculating the non-orientable 4-genus of knots.① Lower bounds coming from knot invariants

- 3 main methods for calculating the non-orientable 4-genus of knots.
 - 1 Lower bounds coming from knot invariants
 - **2** Non-orientable band moves

- 3 main methods for calculating the non-orientable 4-genus of knots.
 - 1 Lower bounds coming from knot invariants
 - **2** Non-orientable band moves
 - **3** Obstructions from the double branched cover

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

Proposition (Yasuhara)

Given a knot K in S^3 , if $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \ge 2$.

We denote the signature of a knot K as $\sigma(K)$ and the Arf invariant as $\operatorname{Arf}(K)$.

Proposition (Yasuhara)

Given a knot K in S^3 , if $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, then $\gamma_4(K) \ge 2$.

Example: The figure 8 knot has $\sigma(4_1) = 0$ and Arf $(4_1) = 1$ and thus $\gamma_4(4_1) \ge 2$.

The 4-dimensional clasp number of a knot, $c_4(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4-ball bounded by K.

The 4-dimensional clasp number of a knot, $c_4(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4-ball bounded by K.

Proposition (Murakami–Yasuhara)

For any knot K,

 $\gamma_4(K) \leq \begin{cases} c_4(K) & \text{if } c_4(K) \text{ is even and } c_4(K) \neq 2\\ c_4(K) + 1 & \text{otherwise} \end{cases}$

The 4-dimensional clasp number of a knot, $c_4(K)$, is the minimum number of double points of transversley immersed 2-disks in the 4-ball bounded by K.

Proposition (Murakami-Yasuhara)

For any knot K,

 $\gamma_4(K) \leq \begin{cases} c_4(K) & \text{if } c_4(K) \text{ is even and } c_4(K) \neq 2\\ c_4(K) + 1 & \text{otherwise} \end{cases}$

Question: Is there any way to improve this for a precise result?

Lemma (F)

Given a knot K satisfying $\sigma(K) + 4\operatorname{Arf}(K) \equiv 4 \pmod{8}$, and $c_4(K) \in \{1, 2\}$, then $\gamma_4(K) = 2$.

The little Upsilon invariant is denoted v(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \le \gamma_4(K)$$

The little Upsilon invariant is denoted v(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

$$\left| v(K) - \frac{\sigma(K)}{2} \right| \le \gamma_4(K)$$

There is a recursive formula for torus knot calculations.

Knot Invariants - HFK

The *d*-invariant from -1 surgery on a knot in S^3 is denoted $d(S^3_{-1}(K))$.

The *d*-invariant from -1 surgery on a knot in S^3 is denoted $d(S^3_{-1}(K))$.

Theorem (Batson)	
For a knot K,	$\frac{\sigma(K)}{2} - d(S^3_{-1}(K)) \le \gamma_4(K).$

The *d*-invariant from -1 surgery on a knot in S^3 is denoted $d(S^3_{-1}(K))$.

Theorem (Batson)

For a knot K,

$$\frac{\sigma(K)}{2} - d(S^3_{-1}(K)) \le \gamma_4(K).$$

Theorem (F-Garcia-Murphy-Percle)

For a torus knot $T_{p,q}$ where p < q,

$$d(S_{-1}^{3}(T_{p,q})) = 2\left(\left\lfloor \frac{p}{2} \right\rfloor + \sum_{k=0}^{\lfloor \frac{p}{2} \rfloor - 1} \left\lfloor \frac{(p-1-2k)q - p - 1}{2p} \right\rfloor\right)$$

.

Orientable Band Moves

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

Orientable Band Moves

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

A non-orientable band move transforms a knot K into a different knot J.

Figure 8 knot to Trefoil

If the knots K and K' are related by a non-oriented band move, then

 $\gamma_4(K) \le \gamma_4(K') + 1$

If a knot K is related to a slice knot K' by a non-oriented band move, then $\gamma_4(K) = 1$.

If the knots K and K' are related by a non-oriented band move, then

 $\gamma_4(K) \le \gamma_4(K') + 1$

If a knot K is related to a slice knot K' by a non-oriented band move, then $\gamma_4(K) = 1$.

Example: The figure 8 knot, 4_1 , has $\gamma_4(4_1) \ge 2$.

If the knots K and K' are related by a non-oriented band move, then

 $\gamma_4(K) \le \gamma_4(K') + 1$

If a knot K is related to a slice knot K' by a non-oriented band move, then $\gamma_4(K) = 1$.

Example: The figure 8 knot, 4_1 , has $\gamma_4(4_1) \ge 2$. 4_1 is related to the trefoil by one non-oriented band move.

If the knots K and K' are related by a non-oriented band move, then

 $\gamma_4(K) \le \gamma_4(K') + 1$

If a knot K is related to a slice knot K' by a non-oriented band move, then $\gamma_4(K) = 1$.

Example: The figure 8 knot, 4_1 , has $\gamma_4(4_1) \ge 2$. 4_1 is related to the trefoil by one non-oriented band move. Thus, $\gamma_4(4_1) = 2$.

Denote the double branched cover of S^3 over a knot K as $D_K(S^3)$.

Denote the double branched cover of S^3 over a knot K as $D_K(S^3)$.

Denote the double branched cover of S^3 over a knot K as $D_K(S^3)$.

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

 \bigcirc

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

 $\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$

 \bigcirc

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

 $\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$

Given x and y are both 1-cycles,

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

 $\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$

Given x and y are both 1-cycles, suppose nx bounds a 2-chain c for some $n\in\mathbb{Z}$

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

 $\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$

Given x and y are both 1-cycles, suppose nx bounds a 2-chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

 \bigcirc

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

$$\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$

Given x and y are both 1-cycles, suppose nx bounds a 2-chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

$$\lambda([x],[y]) = \frac{c \cdot y}{n} \in \mathbb{Q}/\mathbb{Z}$$

 \bigcirc

As $D_K(S^3)$ is a rational homology 3-sphere, we may define a linking form

$$\lambda : H_1(D_K(S^3); \mathbb{Z}) \times H_1(D_K(S^3); \mathbb{Z}) \to \mathbb{Q}/\mathbb{Z}$$

Given x and y are both 1-cycles, suppose nx bounds a 2-chain c for some $n \in \mathbb{Z}$ and denote $c \cdot y$ as the intersection number of c and y.

$$\lambda([x],[y]) = \frac{c \cdot y}{n} \in \mathbb{Q}/\mathbb{Z}$$

The linking form can be directly calculated from a checkerboard coloring of a knot.

Corollary (Gilmer–Livingston)

Suppose that $H_1(D_K(S^3)) = \mathbb{Z}_n$ where *n* is the product of primes, all with odd exponent. Then if *K* bounds a Möbius band in B^4 , there is a generator $a \in H_1(D_K(S^3))$ such that $\lambda(a, a) = \pm 1/n$

Corollary (Gilmer–Livingston)

Suppose that $H_1(D_K(S^3)) = \mathbb{Z}_n$ where *n* is the product of primes, all with odd exponent. Then if *K* bounds a Möbius band in B^4 , there is a generator $a \in H_1(D_K(S^3))$ such that $\lambda(a, a) = \pm 1/n$

Corollary (F)

Let K in S^3 be a knot and suppose that $H_1(D_K(S^3)) = \mathbb{Z}_{p^2q}$ where p is prime and q is a product of primes, all with odd exponent. Then if K bounds a Möbius band in B^4 , there is a generator $a \in H_1(D_K(S^3))$ such that either $\lambda(a, a) = \pm 1/p^2 q$ or $\lambda(a, a) = \pm 1/q$. Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of them have $\gamma_4(K) \in \{1, 2\}$.

• The knot invariants do not offer an obstruction.

- The knot invariants do not offer an obstruction.
- Many, many non-orientable band moves have been attempted, resulting in the bound $γ_4(K) ≤ 2$ for all 6 knots.

- **①** The knot invariants do not offer an obstruction.
- Many, many non-orientable band moves have been attempted, resulting in the bound $γ_4(K) ≤ 2$ for all 6 knots.
- The linking form on the double branched cover does not offer an obstruction.

- **①** The knot invariants do not offer an obstruction.
- Many, many non-orientable band moves have been attempted, resulting in the bound $γ_4(K) ≤ 2$ for all 6 knots.
- The linking form on the double branched cover does not offer an obstruction.

Thus, the knots $11n_{17}$, $11n_{40}$, $11n_{159}$, $11n_{166}$, $11n_{177}$ and $11n_{178}$ all have $\gamma_4(K) = 1$ or 2.

Future Work

- Let K be a knot in S^3 and a F a non-orientable surface in B^4 where $\partial F = K$.
- One may construct a knot trace, denoted $X_r(K)$, by attaching an *r*-framed 2-handle to B^4 along a knot K.

Future Work

- Let K be a knot in S^3 and a F a non-orientable surface in B^4 where $\partial F = K$.
- One may construct a knot trace, denoted $X_r(K)$, by attaching an *r*-framed 2-handle to B^4 along a knot K.
- There are knots that are not slice, but for some r there is a smoothly embedded S^2 that generates $H_2(X_r(K);\mathbb{Z}) \cong \mathbb{Z}$.

Future Work

- Let K be a knot in S^3 and a F a non-orientable surface in B^4 where $\partial F = K$.
- One may construct a knot trace, denoted $X_r(K)$, by attaching an *r*-framed 2-handle to B^4 along a knot K.
- There are knots that are not slice, but for some r there is a smoothly embedded S^2 that generates $H_2(X_r(K);\mathbb{Z}) \cong \mathbb{Z}$.

Question

Do there exist knots K with $\gamma_4(K) > 1$, and some $r \in \mathbb{Z}$, so that a smoothly embedded $\mathbb{R}P^2$ generated $H_2(X_r(K);\mathbb{Z}_2) \cong \mathbb{Z}_2$?

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

- The Trefoil knot has = $g_4(K) = 1$ for every r and $\gamma_4(K) = 1$.
- ② The Cinquefoil knot has $= g_4(K) = 2$ for every r and $\gamma_4(K) = 1$.

Examples

Theorem (F)

For each genus g, there exists a $K \in S^3$ and $r \in \mathbb{Z}$ so that the genus of the orientable surface $S \in H_2(X_r(K);\mathbb{Z})$ is g and the genus of the non-orientable surface $F \in H_2(X_r(K);\mathbb{Z}_2)$ is 1.

- The Trefoil knot has $= g_4(K) = 1$ for every r and $\gamma_4(K) = 1$.
- **2** The Cinquefoil knot has $= g_4(K) = 2$ for every r and $\gamma_4(K) = 1$.

③ For torus knots $T_{3,q}$, we have that for any relatively prime q > 3 and any r < 2(q-1)-1, $g_{sh}^r(T_{3,q}) = g_4(T_{3,q}) = q-1$ and $\gamma_4(K) = 1$. This covers cases for $g \ge 3$.

Thank you for your attention!

Non-Orientable 4 Genus of Knots