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Background - Slice Knots

Definition (4-Genus)

Given a knot K in S3, the 4-genus, g4(K), is defined to be the minimum
genus among all orientable surfaces S smoothly embedded in B4 so that
∂S =K.

● The 61 knot has g4(61) = 0.

● When g4(K) = 0, we say K is a slice knot.
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Background - Slice Knots

The orientable band move from the 61 knot to 2 unlinked unknots.

A view of the knot bounding a disk in B4.
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Background - Non-Orientable Analog

Definition (Non-Orientable 4 Genus)

Non-Orientable 4-genus is denoted γ4(K) and is defined to be the
minimum first betti number of a surface F smoothly embedded in B4 so
that ∂F =K.
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Motivation

● Does g4(K) provide a bound for γ4(K)?

● Note that (#gT
2)#RP2

=#2g+1RP2.

● Does γ4(K) = 2g4(K) + 1?
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γ4(K) = 2g4(K) + 1

● The 818 knot has g4(818) = 1 and γ4(818) = 3

● The 51 knot has g4(51) = 2... does this mean γ4(51) = 5?

Thus, γ4(51) = 1 and we have the bound γ4(K) ≤ 2g4(K) + 1.
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Main Results

Theorem (F)

For the 185 non-alternating 11 crossing knots,

(a) 121 knots have γ4(K) = 1

(b) 58 knots have γ4(K) = 2

The remaining 6 knots have γ4(K) = 1 or 2.
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Techniques for Calculation

3 main methods for calculating the non-orientable 4-genus of knots.

1 Lower bounds coming from knot invariants

2 Non-orientable band moves

3 Obstructions from the double branched cover
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Knot Invariants

We denote the signature of a knot K as σ(K) and the Arf invariant as
Arf(K).

Proposition (Yasuhara)

Given a knot K in S3, if σ(K) + 4Arf(K) ≡ 4 (mod 8), then γ4(K) ≥ 2.

Example: The figure 8 knot has σ(41) = 0 and Arf (41) = 1 and thus
γ4(41) ≥ 2.
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Knot Invariants

The 4-dimensional clasp number of a knot,
c4(K), is the minimum number of double
points of transversley immersed 2-disks in the
4-ball bounded by K.

Proposition (Murakami–Yasuhara)

For any knot K,

γ4(K) ≤ {
c4(K) if c4(K) is even and c4(K) ≠ 2

c4(K) + 1 otherwise

Question: Is there any way to improve this for a precise result?
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Knot Invariants

Lemma (F)

Given a knot K satisfying σ(K) + 4Arf(K) ≡ 4 (mod 8), and
c4(K) ∈ {1,2}, then γ4(K) = 2.
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Knot Invariants - HFK

The little Upsilon invariant is denoted υ(K).

Proposition (Ozváth–Stipsicz–Szabó)

Given K is a knot,

∣υ(K) −
σ(K)

2
∣ ≤ γ4(K)

There is a recursive formula for torus knot calculations.
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Knot Invariants - HFK

The d-invariant from -1 surgery on a knot in S3 is denoted d(S3
−1(K)).

Theorem (Batson)

For a knot K,
σ(K)

2
− d(S3

−1(K)) ≤ γ4(K).

Theorem (F-Garcia-Murphy-Percle)

For a torus knot Tp,q where p < q,

d(S3
−1(Tp,q)) = 2

⎛

⎝
⌊
p

2
⌋ +

⌊
p
2 ⌋−1

∑
k=0

⌊
(p − 1 − 2k)q − p − 1

2p
⌋
⎞

⎠
.
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Orientable Band Moves

An orientable band move transforms a knot into a link.

Figure 8 knot to Hopf Link

A non-orientable band move transforms a knot K into a different knot J .

Figure 8 knot to Trefoil
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Non-Orientable Band Moves

Proposition (Jabuka–Kelly)

If the knots K and K ′ are related by a non-oriented band move, then

γ4(K) ≤ γ4(K
′
) + 1

If a knot K is related to a slice knot K ′ by a non-oriented band move,
then γ4(K) = 1.

Example: The figure 8 knot, 41, has γ4(41) ≥ 2. 41 is related to the trefoil
by one non-oriented band move. Thus, γ4(41) = 2.
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Double Branched Cover

Denote the double branched cover of S3 over a knot K as DK(S
3).
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Double Branched Cover

As DK(S
3) is a rational homology 3-sphere, we may define a linking form

λ ∶H1(DK(S
3
);Z) ×H1(DK(S

3
);Z) → Q/Z

Given x and y are both 1-cycles, suppose nx bounds a 2-chain c for some
n ∈ Z and denote c ⋅ y as the intersection number of c and y.

λ([x], [y]) =
c ⋅ y

n
∈ Q/Z

The linking form can be directly calculated from a checkerboard coloring

of a knot.
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Double Branched Cover

Corollary (Gilmer–Livingston)

Suppose that H1(DK(S
3)) = Zn where n is the product of primes, all with

odd exponent. Then if K bounds a Möbius band in B4, there is a
generator a ∈H1(DK(S

3)) such that λ(a, a) = ±1/n

Corollary (F)

Let K in S3 be a knot and suppose that H1(DK(S
3)) = Zp2q where p is

prime and q is a product of primes, all with odd exponent. Then if K
bounds a Möbius band in B4, there is a generator a ∈H1(DK(S

3)) such
that either λ(a, a) = ±1/p2q or λ(a, a) = ±1/q.
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bounds a Möbius band in B4, there is a generator a ∈H1(DK(S

3)) such
that either λ(a, a) = ±1/p2q or λ(a, a) = ±1/q.

Megan Fairchild Merrick Dodge (Iowa), Shuo Liu (Maryland), Sam Miller (Hawaii)Non-Orientable 4 Genus of Knots



The 6 knots

Previously mentioned, of the 185 non-alternating 11 crossing knots, 6 of
them have γ4(K) ∈ {1,2}.

Why was I unable to state whether the
non-orientable 4-genus is 1 or 2?

1 The knot invariants do not offer an obstruction.

2 Many, many non-orientable band moves have been attempted,
resulting in the bound γ4(K) ≤ 2 for all 6 knots.

3 The linking form on the double branched cover does not offer an
obstruction.

Thus, the knots 11n17, 11n40, 11n159, 11n166, 11n177 and 11n178 all have
γ4(K) = 1 or 2.
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Future Work

● Let K be a knot in S3 and a F
a non-orientable surface in B4

where ∂F =K.

● One may construct a knot
trace, denoted Xr(K), by
attaching an r-framed 2-handle
to B4 along a knot K.

● There are knots that are not
slice, but for some r there is a
smoothly embedded S2 that
generates H2(Xr(K);Z) ≅ Z.

Question

Do there exist knots K with γ4(K) > 1, and some r ∈ Z, so that a
smoothly embedded RP2 generated H2(Xr(K);Z2) ≅ Z2?
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Examples

Theorem (F)

For each genus g, there exists a K ∈ S3 and r ∈ Z so that the genus of the
orientable surface S ∈H2(Xr(K);Z) is g and the genus of the
non-orientable surface F ∈H2(Xr(K);Z2) is 1.

1 The Trefoil knot has = g4(K) = 1 for
every r and γ4(K) = 1.

2 The Cinquefoil knot has = g4(K) = 2 for
every r and γ4(K) = 1.

3 For torus knots T3,q, we have that for any
relatively prime q > 3 and any
r < 2(q − 1) − 1, grsh(T3,q) = g4(T3,q) = q − 1
and γ4(K) = 1.
This covers cases for g ≥ 3.
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Thank You!

Thank you for your attention!
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